PHYSICS

1. Find the normal reaction exerted by the surface on the block

2. Two blocks are kept in contact on a smooth surface as shown in the figure. What is the normal force exerted by A on B? Also draw an FBD.

3. A book is at rest on a table top. Diagram the forces acting on the book.
4. A girl is suspended motionless from a bar which hangs from the ceiling by two ropes. Diagram the forces acting on the girl.
5. An egg is free-falling from a nest in a tree. Neglect air resistance. Diagram the forces acting on the egg as it is falling
6. A flying squirrel is gliding (no wing flaps) from a tree to the ground at constant velocity. Consider air resistance. Diagram the forces acting on the squirrel.
7. A rightward force is applied to a book in order to move it across a desk with a rightward acceleration. Consider frictional forces. Neglect air resistance. Diagram the forces acting on the book.
8. Find the normal reaction exerted by the surface on the block

9. A block of mass ' m ' is kept on the ground as shown in the figure.
(i) Draw FBD of block.
(ii) Are forces acting on block actionreaction pair?
iii) If answer is no, draw action-reaction pair.

10. Find the magnitude of force exerted by a string on pulley.

CHEMISTRY

1. Find number of σ and π-bonds in following:
a) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{COOH}$
b) $\mathrm{C}_{2}(\mathrm{CN})_{4}$
2. What is the hybridized state of each carbon in carbon suboxide $\left(\mathrm{C}_{3} \mathrm{O}_{2}\right)$?
3. Match each of the following species with one of these hybridisation schemes:

\quad (I)	(II)
(A) $s p$	(a) SF_{6}
(B) $s p^{2}$	(b) CS_{2}
(C) $s p^{3}$	(c) SnCl_{4}
(D) $s p^{3} d$	(d) NO_{3}^{-}
(E) $s p^{3} d^{2}$	(e) AsF_{5}

4. Predict the shapes of the following molecules using the VSEPR model: $\mathrm{BeCl}_{2}, \mathrm{SiCl}_{4}, \mathrm{AsF}_{5}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{PH}_{3}, \mathrm{XeO}_{2} \mathrm{~F}_{2}$, CH_{4}
5. Which of the following molecules are linear? $\mathrm{ICI}_{2}^{-}, \mathrm{IF}_{2}^{+}, \mathrm{OF}_{2}, \mathrm{SnI}_{2}$,
6. Which of the following molecules has the maximum number of AX bonds of identical bond length when A is the central atom and X is the surrounding atom?
a) SF_{4}
b) IF_{7}
7. The experimental dipole moment of water molecule is 1.84 D . Calculate the bond angle $\mathrm{H}-\mathrm{O}-\mathrm{H}$ in water molecule, if dipole moment of OH bond is 1.5 D .
8. Calculate the percentage of ionic character in $\mathrm{Cs}-\mathrm{Cl}$ bond in CsCl molecule. The electronegativity values of Cs and Cl are 0.7 and 3.0 respectively.
9. A diatomic molecule has a dipole moment of 1.2 D . If the bond distance is $1.0 \AA$, what fraction of an electronic charge, e, exists on each atom?
10 . The dipole moment of LiH is 1.964×10^{-29} cm and the interatomic distance between Li and H in this molecule is $1.596 \AA$. What is the percent ionic character in LiH ?

MATHS

1. Solve : $\sin ^{2} \theta-\cos \theta=\frac{1}{4}, 0 \leq \theta \leq 2 \pi$
2. Solve : $\sin 3 \theta-\sin \theta=4 \cos ^{2} \theta-2$
3. Let A and B denote the statements

$$
\begin{aligned}
& \text { A: } \cos \alpha+\cos \beta+\cos \gamma=0 \\
& \text { B }: \sin \alpha+\sin \beta+\sin \gamma=0 \\
& \text { If } \cos (\beta-\gamma)+\cos (\gamma-\alpha)+ \\
& \cos (\alpha-\beta)=-\frac{3}{2}, \text { then }
\end{aligned}
$$

4. Let $f_{k}(x)=\frac{1}{k}\left(\sin ^{k} x+\cos ^{k} x\right)$ where $x \in R$
and $K \geq 1$. Then $f_{4}(x)-f_{6}(x)$ equals
5. Solve : $16^{\sin ^{2} x}+16^{\cos ^{2} x}=10,0 \leq x<$ 2π
6. If the equation $a \sin x+\cos 2 x=2 a-7$ possesses a solution, then find the values of a.
7. Find the general solution of $(1-2 \cos \theta)^{2}$ $+(\tan \theta+\sqrt{3})^{2}=0$.
8. Solve : $3 \cos ^{2} \theta-2 \sqrt{3} \sin \theta \cos \theta-$ $3 \sin ^{2} \theta=0$
9. Solve : $2+\tan \mathrm{x} \cot \frac{x}{2}+\cot \mathrm{x} \tan \frac{x}{2}=0$
10. If
$\frac{1-\cos 2 \theta}{1+\cos }=$
3 then the general value of θ is
